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The transition mechanism in a spatially developing two-dimensional wake is studied 
by means of direct numerical simulations. Five different types of forcing of the inlet 
are investigated : fundamental mode, fundamental and one or two subharmonics, 
fundamental mode and random noise, and random noise only. The effects of the 
amplitude levels of the perturbations on the development of the layer are also 
investigated. Statistical analyses are performed and some numerical results are 
compared with experimental measurements. When only a fundamental mode is 
forced, the energy spectra show amplification of the fundamental frequency and its 
higher harmonics, and the development of a stable vortex street. When the inlet flow 
is forced by a fundamental mode and two subharmonics, a vortex street also appears 
downstream, but the shape of the vortices is distorted. The amplitude of the 
subharmonic grows only after the saturation of the fundamental. Amplification of 
modes close to the fundamental mode is observed when random noise of large 
amplitude is added to the fundamental mode. The phase jitter around the 
fundamental frequency plays a critical role in generating vortices of random shape 
and spacing. Large- and small-scale distortions of the flow structure are observed. 
Pairing of vortices of the same sign is observed, as well as coupling of vortices of 
opposite sign. When the inlet profile is forced by random noise of amplitude 
times the free-stream velocity, one frequency close to the most unstable one is 
amplified more than the others. The energy spectrum is otherwise full. When the same 
low amplitude is used to force the fundamental mode and its two subharmonics, 
bands of energy develop around the forced modes and their harmonics. Finally, we 
find that large-deficit wakes are globally unstable when the size of the absolutely 
unstable region is greater than about three times the half-width of the wake 

1. Introduction 
In the past three decades, linear stability analysis (Sato & Kuriki 1961 ; Mattingly 

& Criminale 1972; Papageorgiou & Smith 1989) has led to a comprehensive 
understanding of the linear stage of transition in plane wakes. Our understanding of 
the nonlinear and turbulent stages is less well developed. Nonlinear theory developed 
by Papageorgiou & Smith (1988) using an asymptotic solution was used to study the 
long-wavelength regime in a wake. The nonlinear stages have been investigated 
experimentally, and a few numerical studies have examined the early nonlinear 
stages of forced wakes. 

t Present address : Department of Mechanical and Control Engineering, University of Electro- 
Communications, Chofu, Tokyo 182, Japan. 
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Experimental studies of the wake have been carried out extensively by Sat0 & 
Kuriki (1961), Sat0 & Onda (1970), Sat0 & Saito (1975, 1978) and Gharib & 
Williams-Stuber (1989). Detailed measurements were made in the laminar-turbulent 
transition region of plane wakes with natural and various kinds of forced 
disturbances. In all cases, the transition to turbulence was gradual. Sat0 & Onda 
(1970) reported that the wake responds differently under different kinds of forcing. 
They find that the transition process strongly depends on the initial disturbance. In  
the nonlinear region, they reported the generation of velocity fluctuations at  the 
harmonics of the forced frequencies. They conjectured that the slow and irregular 
fluctuations found in the natural transition might be the result of a nonlinear process 
of subtraction of two frequencies. They explained the experimental results by two 
empirical properties of the nonlinear interaction : the growth suppression induced by 
a large-amplitude fluctuations ; and the strong interaction between fluctuations of 
similar amplitudes. Gharib & Williams-Stuber (1989) investigated the enhancement 
and cancellation of perturbations in a plane wake by the strip heater technique. They 
showed that the mean velocity profile adjusts itself to become more receptive to  the 
forced frequency. 

I n  their numerical study, Zabusky & Deem (1971) simulated temporally developing 
wakes with a single excited eigenmode as an initial condition using a finite-difference 
method. They showed the existence of a double row of elliptical vortices, and studied 
the behaviour of the spatial harmonics. They did not study the interactions of a 
fundamental with its subharmonics. Aref & Siggia (1981) used a vortex method to 
study a plane temporally developing wake defined by two vortex sheets. They 
showed that doublets, triplets and natural pairs form in a two-dimensional randomly 
forced wake. They also found that the asymptotic structure was highly dependent on 
initial conditions, and questioned the idea of universality of the far wake. Comte, 
Lesieur & Chollet (1989) studied the temporal wake using the NavierStokes 
equations. They computed the development of instabilities for both the forced case 
and the natural (random initial perturbation) case. They found doublets and pairings 
consistent with the results of Aref & Siggia (1981). Hannemann & Oertel (1989) 
simulated the wake behind a flat plate with a thick trailing edge using a finite- 
difference method. They also analysed the wake using stability analysis and found 
regions of local absolute and convective instability. An early theoretical investigation 
of the wake by Koch (1985) found absolute and convective instability regimes. The 
temporal amplification process of perturbations at supercritical Reynolds numbers 
was studied by Hultgren & Aggarwal (1987). They calculated the critical defect value 
and supercritical Reynolds numbers of absolutely unstable Gaussian wakes using 
nonlinear stability theory. 

Many features of the experimental observations on forced wakes were reproduced 
by the numerical studies of temporally evolving layers. However, the effects on the 
layer development of random perturbations that occur naturally in an experiment 
were not considered in the numerical studies. I n  addition, a simulation that considers 
the spatially developing problem will more closely mimic the near-wake experiments. 

The purpose of this investigation is to present numerical results for the spatial 
evolution of various instability modes. The interaction of these modes and the flow 
dynamics that are crucial to the understanding of the evolving structures in the 
transition region of the flow are investigated. The nonlinear interaction of instability 
modes and the growth of randomness are studied by means of statistical analysis and 
visualizations of the vorticity field. The effect of interaction of these modes on the 
flow structure is investigated. Finally, a quantitative measure of the size of the 
absolutely unstable region for global instability is found. 
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FIQURE 1.  Coordinate system, with inlet Gaussian profile. 

2. Mathematical formulation 
2.1. Governing equations 

The computational domain starts downstream of the trailing edge of a splitter plate. 
Figure 1 illustrates the computational domain and the coordinate system used. The 
streamwise (x) extent of the computational domain is finite, and the cross-stream (y) 
extent is infinite in both the positive and negative directions. The time-dependent 
incompressible Navier-Stokes equations are written in rotational form as follows : 

where P is the dynamic pressure, Re = U,  btlv is the Reynolds number, b; is the half- 
width of the inlet Gaussian wake profile, and U ,  is the free-stream velocity. 
Conservation of mass for the fluid is given by the continuity equation 

! L O .  axi 
All quantities are non-dimensionalized by the appropriate characteristic scales, U,  
and b;. 

2.2. Boundary conditions 
A Gaussian profile was chosen for the inlet velocity, 

U(y) = 1 -0.692exp (1  -0.69315y2), (3) 

where the coefficient 0.692 in (3) is such that the centreline deficit will correspond to 
the experiment by Sat0 & Kuriki (1961). In the study of a large-deficit wake, this 
coefficient is set to 0.99. The coefficient 0.69315 produces a half-width of one. In 
addition to the mean flow, the inlet flow is forced with unstable eigenfunctions of the 
Orr-Sommerfeld equation for the Gaussian profile. Various linear combinations of 
the fundamental mode, first and second subharmonics are superimposed on the mean 
velocity at  the inlet plane. These perturbations are of the form 

uj’(y, t )  = $[C,(y) eiwd + c.c.], (4) 

where wp represents the frequency of oscillation of the eigenfunctions, and C.C. 
denotes complex conjugate. The random noise is created using the profiles of the 
eigenfunctions and random frequencies. This perturbation is of the form 

(5) u,’P(y, t )  = +[Cj(y) eiwrpt + c.c.], 
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FIQURE 2. Profile of the forced fundamental eigenfunction. 

where wrP is a random frequency generated by a random function. In this work, only 
the v-component was used to perturb the inlet flow. Figure 2 shows the profile of the 
fundamental eigenfunction, 5, at w = 0.608 for the Gaussian wake represented by (3) 
at  Re = 600. 

A time-dependent advection condition of the form 

au, aui - -+ua- at ax - 0, 

where U, represents the advection speed of the large-scale structures in the layer, is 
applied to each of the velocity components at the exit plane. In addition to being 
fairly ‘soft ’, this condition has the advantage of automatically satisfying global 
conservation of mass, m opposed to conditions that use a non-constant U, or higher 
derivatives. This approach has been taken in other simulations of spatially 
developing free shear layers (see Davis & Moore 1985). The choice of U, = 1 is most 
appropriate for simulations of small-deficit wakes, but we found that it is also 
appropriate for moderate-deficit wakes. We use a large computational domain in the 
s-direction, so the wake deficit is small in the exit plane. 

The velocity components are split into computational variables and ‘reference ’ 

where the computational variable are denoted by subscript c. This decomposition 
implies that the boundary conditions a t  infinity on the computational variables are 
homogeneous Dirichlet. 

2.3. Initial conditions 
The Gaussian profile prescribed for the mean u-component at  the inlet plane is 
distributed uniformly at all s-locations in the domain at  t = 0. These initial 
conditions must be allowed to ‘wash out ’ before any statistical analysis can be 
performed on the solution. Laminar flow profiles calculated with no forcing at the 
inlet plane are used as the initial conditions to simulate the large-deficit wake. 
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3. Numerical method 
The two-dimensional Navier-Stokes equations are solved on a domain that is 

infinite in the y-direction and finite in the x-direction. Pressure is eliminated by 
taking the curl of (1) twice. This yields a fourth-order equation for the streamwise 
velocity u :  

-- 
at 

where H,(i  = 1,2) represents the advection terms in the x- and y-momentum 
equations. 

Equation (8) is advanced in time explicitly using a compact third-order 
Runge-Kutta scheme (Wray 1991). Since the Laplacian is contained in the time- 
derivative term, a Poisson equation must be solved during each substep. The cross- 
stream velocity v is recovered directly from the continuity equation. The algorithm 
is based on a Fourier method with a cotangent mapping in the y-direction 
(y = -,9cot (ng), with ,9 = 8 for all of the present simulations), and fourth- and sixth- 
order accurate Pad6 finite-difference approximations (Lele 1991) in the x-direction. 
The algorithm contains no numerical diffusion, which we believe is important for 
problems where the dynamics are important. Furthermore, without numerical 
diffusion, marginal resolution in the x-direction will appear as high-wavenumber 
oscillations caused by dispersion, and is thus easily detected. In  the y-direction, the 
Fourier coefficients always decayed by a t  least three to four orders of magnitude. 
Appropriate numbers of Fourier modes and grid points were determined after 
numerical tests on the resolution in both x- and y-directions at various Reynolds 
numbers (see 84.1). For more details on the numerical scheme, the reader is referred 
to Buell (1991). 

4. Vortical structure in a plane wake 
4.1. Summry of the numerical simulations 

Five cases were studied in the present work: Case 1 is a wake flow forced with a 
fundamental mode only; Case 2 is forced with a fundamental mode and its first 
subharmonic; Case 3 is forced with a fundamental mode and its first and second 
subharmonics ; Case 4 is forced with the fundamental mode and random-phase noise 
In this case, the amplitudes of the fundamental mode and random-phase noise were 
0.01 and 0.0005 (recall that all velocity amplitudes have been scaled with the free- 
stream velocity U,). Case 5 is forced with a random-phase noise only. In Cases 1 and 
2, the amplitudes of the perturbations are 0.01. In  Cases 3 and 5, the amplitudes are 
0.00001 and 0.01. The Reynolds number ranged from 200 to 700. The simulation at 
Re = 200 used 384 uniformly distributed grid points in the x-direction over 
0 < 2 < 200, and 64 Fourier modes in the y-direction. At Re = 300, 512 grid points 
were used in the x-direction and 128 modes in the y-direction. A t  Re = 600, 768 grid 
points were used in the 2-direction and 128 modes in the y-direction. For the large- 
deficit wake, 1536 grid points were used in the x-direction (0 < x < 300), and 128 
modes in the y-direction. In  this case the flow was forced with a fundamental of 
amplitude 0.0005 for only one period. 
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FIQURE 3. Vorticity contours: Case 1 at Re = 600 (contour interval: 0.0625 in (a),  0.045 in ( b ) ) .  

6) 

FIGURE 4. Energy spectrum of v ;  Case 1 at Re = 600 (z = 50, y = 2.1). 
Fundamental frequency is at w = 0.608. 

4.2. Generation of vortical structures 
Figure 3 shows vorticity contour plots for Case 1 a t  Re = 600. A street of alternate- 
signed vortices can be observed as the wake develops. Before the appearance of these 
vortices, the vorticity contour lines of the laminar wake begin to oscillate downstream 
of the inlet plane. After formation of the street, the vorticity is convected 
downstream with little further dynamics. In  this case, the velocity fluctuations are 
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FIGURE 5. Profile of the fundamental mode (z%*, B B * ) ;  Case 1 at Re = 600. ( a )  2 = 25 ( b )  r = 50. 

periodic. Sharp peaks a t  the fundamental frequency and its higher harmonics in the 
energy spectrum of the v-signal can be seen in figure 4. Figures 5 (a )  and 5 ( b )  show 
the cross-steam distributions of the velocity a t  the fundamental frequency, a t  x = 25 
and 50, respectively. We notice that u has two peaks located approximately at the 
half-width of the layer while v has one peak a t  the wake centre. The fundamental 
mode grows rapidly downstream of the inlet plane. These results show that the 
spatial evolution of the fundamental mode is responsible for the generation of the 
vortex street. 

In  Case 3, with Re = 200 and a perturbation amplitude of 0.01, we find that the 
vortex street (figure 6) is significantly distorted compared to figure 3 by the presence 
of the subharmonic. The time traces of velocities are still periodic, but different from 
those of Case 1.  The spectrum in this case (figure 7)  still shows discrete frequencies. 
The fundamental frequency component and its two subharmonics can be detected, 
as well as their higher harmonics. The deformation of the vortex street is due to the 
spatial evolution of the subharmonic, which is discussed in 6. 

In  Case 5 (random-phase noise with amplitude equal to  O.OOOOl),  a clear vortex 
street is generated as the wake develops and the energy spectrum has a peak at the 
fundamental frequency. The profiles of the fundamental component (figure 8) and 
the vortical structures are similar to those of Case 1, but the magnitudes are smaller. 
On the other hand, when the amplitude of the random noise is 0.01, the vortical 
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FIGURE 6. Vorticity contours; Case 3 at Re = 200 (contour interval : 0.05 in (a), 0.022 in ( b ) ) .  
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FIQURE 7. Energy spectrum of v ;  Case 3 at Re = 200 (x = 50, y = 2). Fundamental frequency is at 
w = 0.586. First and second subharmonic frequencies are at w = 0.295 and 0.147 respectively. 

structure becomes non-periodic, as shown in figure 9. We observe an irregular 
configuration of vortices x = 40. This irregular configuration causes a large 
deformation of the vortex street. Figures 10(a) and 10 ( b )  show the spectra for this 
case at  the inlet plane and at x = 25. As can be seen in figure 10 (a ) ,  random-phase 
noise is a good approximation to broadband noise, where no dominant frequency 
appears. We notice in figure 10(b) that the spectrum does not have a single sharp 
peak a t  the fundamental frequency, but the energy is distributed in a broad band 
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FIGURE 10. Energy spectra of v :  Case 5 with high-amplitude noise at Re = 600: 
(a) at inlet plane and y = 0, ( b )  at x = 25 and y = -2.7.  

with frequencies close to the fundamental one. The small variation of the spatial 
growth rates within this band is responsible for the distorted configuration. I n  this 
case, vortex pairing and coupling are part of the wake development. 

4.3. Observation of vortex interactions 

In this subsection, we describe the evolution in time of the vortical structures when 
the layer is forced by random noise. Experimental measurements a t  high Reynolds 
numbers have not detected pairing motions in a plane wake (Robert & Roshko 1985), 
but earlier low-Reynolds-number flow visualizations by Taneda ( 1959) suggested 
that pairing plays a role in the growth of the wake. In  our simulation with a 
fundamental and its subharmonic we did not detect pairing in the length of the domain 
considered. However, we believe that we can detect (see figure 6) the early stages of 
pairing and that we would have detected pairing if our computational domain was 
longer. There is more convincing evidence of the presence of pairing in a forced layer 
in the time-developing simulations of Aref & Siggia (1981) and Chen, Cantwell & 
Mansour (1990). In  addition to  detecting pairing in the forced layer, Aref & Siggia 
(1981) detected pairing when they allowed the numerical errors to  accumulate in 
time and trigger the instability (presumably emulating random forcing). Figure 
11 (a-f) shows the time evolution of the vortical structures when we force the inlet 
with random noise. The plus-sign vortices have been identified as 1 , 2 , 3 , 6 ,  and 7 ,  and 
the minus-sign vortices identified as 4, 5, 8, and 9. These vortices change their 
relative locations in the following snapshots. Figures 11 ( 6 )  and 1 1  (c) show that the 
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plus-sign vortices 2 and 3, and the minus-sign vortices 4 and 5, start pairing and that 
vortex 1 is pushed out downstream. Figure 11 ( d )  shows that vortices 4 and 5 have 
paired, while vortices 2 and 3 are still in the processes of merging. Upstream of these 
vortices, vortices 8 and 9 are also pairing as can be seen in figure 11 (c-e). After the 
amalgamation of vortices 8 and 9, vortices 7 and 8 become a vortex couple shown in 
figure 11 (f), which is similar to the couples reported in the thin liquid film 
experiments by Couder & Basdevant (1986). These observations are very similar to  
those of Aref & Siggia (1981) and seem to be strictly a two-dimensional phenomenon. 
The experiments in soap films emulate two-dimensional flows, and it seems unlikely 
that coupling of vortices can occur in three-dimensional wakes. Vortex stretching 
and viscosity will prevent the coupling from surviving as in two-dimensional flows. 

5. Time-averaged statistics 
In  the previous section we have shown that the development of the structures in 

thc wake is sensitive to inlet forcing. This sensitivity motivates various experimental 
studies on flow control of wakes. From a practical point of view, control might be 
desired for both the instantaneous and the averaged field. In  this section we study 
the effccts of the different forcing on the development of the mean velocity profiles 
and the Reynolds stresses. The length of the averaging interval is 600 time units. 

5.1. Velocity projiles 

Figure 12 shows the development of the mean velocity profiles a t  various x-locations 
for Case 1 a t  Re = 600. We find that the mean velocity a t  the edge of the wake 
exceeds the free-stream velocity a t  around x = 100, which is consistent with the 
measurements of the wake forced with a sound of single frequency (Sato & Saito 
1975). Figure 13 shows the development of the velocity a t  the wake centre Uc/U, .  
We have also plotted on this figure the development of the half-value width b; of the 
mean profile together with the experimental data of Sat0 & Saito (1975). The origin 
of the abscissa in our case is the inlet plane, while the trailing edge is used in 
experimental measurements. Direct comparison is therefore difficult. The velocity 
U J U ,  at the wake centre increases from x = 0 to  x = 65 and then decreases to  
x = 115. The half-value width b; increases rapidly and reaches a maximum near 
x = 45. The general trends of the streamwise variations of Uc/Um and b are the same 
as measured by Sat0 & Onda (1970). The maximum value of b is smaller than that 
of the measurement. For the relatively low Reynolds number Re = 200, the 
distributions of U J U ,  and b show a gradual increase. The maximum values are 
about the same as those of Re = 600 but their x-locations are shifted downstream. I n  
Case 2 and Case 3, where the amplitudes of the fundamental mode and its 
subharmonics are 0.01, the distributions of b are slightly larger than that of Case 1.  
In  Case 5, U J U ,  and b are similar to those of Case 1,  but thc x-locations of the 
respective peaks are shifted downstream. As can be seen by comparing figures 3 and 
9, the vortex street in Case 5 is generated further downstream than in Case 1. 

5.2. Velocity jluctuations 
Distributions of u2, v 2  and ED for Case 1 at Re = 600 are shown in figure 14, where 
the scales of the fluctuation components in figures 14(a), 14(b) and 14(c) are the 
same. The u-fluctuation grows rapidly a t  small x. The maximum value of 2 is located 
a t  x = 35. The vortical structures are created around this location (see figure 3). We 
notice from figures 3 and 14 ( a )  that the y-locations of the two peaks in u" correspond 

_ _  



234 H .  Maekawa, N .  N .  Mansour and J .  C. Buell 

- 25 4 
100 120 140 160 180 200 

X 

1 6  3 2 1  

Y - 5  

- 25 
100 120 140 160 180 200 

X 

I 6  3 2 1  

@ 
Y - 5  

100 120 140 160 180 200 
X 

FIQURE 11  (a-c). For caption see facing page. 

to  the outside edges of the vortices. Figure 14(c) shows that ' ~ z r  changes sign around 
x = 50, which agrees with the measurements by Sat0 & Onda (1970). At Re = 200, 
the u-fluctuation grows rapidly a t  small x, but the maximum value of 2 is smaller 
than that a t  Re = 600. We conclude that the maximum value of 2 increases as the 
Reynolds number increases. Figure 15 shows the streamwise variations of the 
maximum root-mean-square value of the u-fluctuation as a function of x for Case 1. 
The distribution has two peaks, which is consistent with the measurement of the 
forced wake of Sat0 & Saito (1975). The maximum peak value of the numerical result 
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FIGURE 11. Vorticity contours; Case 5 of high-amplitude noise at Re = 600; (a) at time = 900, 
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X 

is smaller than that of the measurements. The reason is that the Reynolds number 
of the simulation is smaller than that of the experiment by Sato & Saito (1975), where 
the Reynolds number is about 850. The u-fluctuations in the case of random forcing 
(Case 5 )  are different from those with periodic forcing (see figure 16a). The scales of 
figure 14 and figure 16 are the same. The profile at about 5 = 40 has symmetric peaks, 
though the magnitude is smaller than in Case 1. The maximum magnitude (0.1) of 
the root-mean square value of the u-fluctuation is close to the experiments (0.105) in 
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FIGURE 13. Development of the mean velocity at the wake centre U J U ,  (solid line) and of the 
half-value width b (dotted line) ; Case 1 at Re = 600. The circles are experimental measurements of 
the half-width by Sat0 & Saito (1975). 

natural transition. The distributions of 2 for large x are different from those of Case 
1. In  this case, the two-peaks profile o f 2  does not exist. Some profiles a t  large x have 
a maximum around the wakc centre, which is consistent with the experimental 
measurements of natural transition. We observe in the vorticity contours of the 
wake forced with random noise that the vortices pass near the wake centre. In  both 
Cases 1 and 5, the distributions of 3 have peaks at  the wake centre upstream of the 
locations where the alternate-signed vortices appcar, as shown in figures 1 4  (b) and 
1 6 ( b ) .  In Case 1 we noticc that 3 at  x = 70 has the characteristic two-peak 
distribution. Further downstream, the two peaks gradually flatten. I n  Case 5 ,  the 
distributions of? at large x are different from those of Case 1, which is related to  the 
relaxation of coherency in the former case. Figure 16 (c) shows the distributions of the 
EO fluctuation of Case 5 .  We notice that this distribution also changes sign a t  around 
the location where the vortex street appears. However, in this case the magnitude of 
the _ _  intensity is smaller than in Case 1. These results show that the specific profiles 
of u2, v 2  and w arc dcterrnined by the vortical structures. 

6. Growth of the fundamental mode, subharmonics and randomness 
We point out that for the Gaussian profile and Reynolds numbers considered in 

this study, a steady laminar-wake solution is obtained when the forcing is stopped. 
Consequently, the wake in this case is convectively unstable. We know that the 
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spatial growth of the fundamental mode is responsible for the generation of the 
vortex street in the wake. In  this section, we will examine the spatial growth of 
modes with various frequencies and discuss their nonlinear interactions. 

We first examine the development of the modes when the layer is forced by a single 
frequency. Figures 17 ( a )  and 17 (6) show that the streamwise distribution for Case 1 
at Re = 200 of the fundamental and the first harmonic component of u a t  y = 2.2 and 
IJ = 0, respectively. We notice in figure 17(a)  that the peak of the fundamental 
component is located near x = 55, where the vortices appear. We also notice in figure 
17(6)  that the distribution of the first harmonic peaks earlier, near x = 45. At the 
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are experimental measurements by Sato & Saito (1975). 

wake centre, the fundamental component of u is zero while the first harmonic 
component is not zero. This agrees with the experimental results of Sato & Kuriki 
(1961). 

Adding two subharmonics to a fundamental frequency (Case 3 a t  Re = 200), 
figures 18 ( a )  and 18 ( b )  show the distribution of the fundamental, and first and second 
subharmonic components of u at  y = 2.2 and y = 0. We find a peak near y = 2.2 in 
the cross-stream u2 profile of the first subharmonic component further downstream 
a t  x = 125. Figure 18 ( a )  indicates that the fundamental mode grows faster than its 
two subharmonics and that the first subharmonic grows after the saturation of the 
fundamental. The location where the fundamental peaks is the same as for Case 1, 
but the amplitude is slightly smaller in Case 3. We notice in figure 18(b) that the 
distribution of the first subharmonic and the first harmonic a t  y = 0 have peaks at 
about x = 45. The vorticity contours (figure 6) show that the first peak in both first 
subharmonic and first harmonic components a t  the wake centre occur a t  the same 
location as where the alternate-signed vortices appear. At large x, the first 
subharmonic component of u starts to grow again, which appears to lead to the early 
stages of pairing. 

When the inlet is forced with low-amplitude (0.00001) random-phase noise (Case 
5),  the fundamental mode grows faster than the others in the linear region. Figure 
19 (a )  shows the spectrum of v 2  at x = 50 and y = -0.8, which is close to an inflexion 
point of the mean profile. The spectrum has a sharp peak at the fundamental 
frequency with a band around it. The bands around the fundamental and its 
harmonics correspond to the ' humps ' of Sato & Saito (1975). Figure 19 ( b )  shows that 
the spectrum of u2 also has a peak at  the fundamental mode similar to that of w2. The 
cross-stream distribution of the fundamental component has a profile similar to that 
of Case 1,  as shown in figure 8, though the magnitudes in this case are smaller. The 
fundamental component continues to grow to about x = 90, where the vortex street 
appears. The spectra a t  x = 75 (see figure 19c ,  d )  show the dominance of the 
fundamental. We can see in figure lS( f )  that the growth of the fundamental 
component of u at y = - 1.7 begins to saturate after the appearance of the vortex 
street. On the other hand, the amplitudes of the frequency components around the 
first subharmonic are small up to x = 100. We notice in figure 19(g, h)  that the 
amplitude of the first subharmonic component gradually increases after the rapid 
decrease of the fundamental component. The amplitude around the second 
subharmonic frequency grows faster than the amplitude near the first subharmonic, 
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FIQURE 16. Profiles of Reynolds stresses; Case 5 with high-amplitude noise at Re = 600: 
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as shown in figure 19. The cross-stream distribution of the energy in the second 
subharmonic is shown in figure 20 (w = 0.152). We find a peak in the u2 profile a t  the 
wake centre in contrast to the profile of the fundamental mode. In  this case we 
observe the formation of alternate-signed vortices around x = 75. The spectra at  
x = 75 in figures 19(c, d )  show higher harmonics with bands around them. Further 
downstream at x = 100 and 150, after the fundamental mode saturates, the bands 
broaden and the amplitude at the fundamental frequency starts to decrease. The 
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FIGURE 17. Development of the fundamental mode (solid line) and its first harmonic (dashed 
line) with downstream distance; Case 1 at Re = 200: (a) y = 2.2, ( b )  y = 0. 
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amplitude at frequencies lower than the fundamental grows gradually as shown in 
figures 19 (e-h). We notice in figures 19(g, h) that the amplitude of the sharp peak at 
the fundamental frequency decreases with x for both components. The fundamental 
component of u becomes indistinguishable from the noise, while v maintains a sharp 
peak at  the fundamental frequency. These observations are consistent with 
experimental measurements. 

In  Case 4 we introduced at the inlet plane a fundamental mode and a random- 
phase noise of small amplitude. The amplitude of the fundamental mode is 0.01 and 
that of the random-phase noise is 0.0005. Figures 21(a), 21(b)  and 21(c) show the 
spectra of the v-component a t  x = 0, 75, and 150, respectively. We notice the growth 
of a band around the fundamental mode as we move downstream. As the higher 
harmonics develop, a band also develops around them (see figure 21). On the other 
hand the noise a t  frequencies lower than the fundamental does not grow as much as 
it does in Case 5 at x = 150. This is an indication that the presence of the 



Instability mode interactions in a spatially developing wake 24 1 

0 40 80 120 160 200 

'. .. 
. ....__._ .,.._........_.... ....... ,. . ' 

J 

0 40 80 120 160 200 

FIGURE 18. Development of the fundamental mode and its first two subharmonics; Case 3 at 
Re = 200 : (a )  y = 2.2 (solid line: fundamental, dotted line : first subharmonic, dashed line : second 
subharmonic), ( b )  y = 0 (dotted line: first subharmonic, dashed line: first harmonic). 

fundamental has suppressed the growth of the noise. We have investigated spatial 
distributions of the fundamental and other frequency components. Figures 22 ( a )  and 
22 ( b )  show the cross-stream distribution of the fundamental component at x = 50 and 
150, respectively. The profiles of u2 and v 2  are similar to those of Case 1 .  In both Cases 
1 and 4, and after the fundamental saturates, the profiles of u2 and v 2  spread out only 
slightly, even by x = 150. The distributions of the second subharmonic frequency are 
shown in figure 22 (c ,d) .  The profile of u2 has one peak at the wake centre at x = 50 
and two peaks a t  x = 150. The magnitude of u2 is larger than that of v2. Figures 22 ( e ) ,  
22 (f), 22 (g), and 22 (h)  show the cross-stream distributions of u2 and v2 a t  x = 150, for 
frequencies corresponding to 0.704, 0.508, 0.408, and 0.102, respectively. The 
distribution of the fundamental mode is symmetric, as shown in figure 22(a). The 
profile of u2 has two peaks with zeros off the centreline, which is consistent with the 
measurement of Sato & Kuriki (1961). Figure 22(e,f) shows the profiles around the 

X 
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FIGURE 20. Profile of the second subharmonic (BB* ,  ti&*) at x = 50; Case 5 
with low-amplitude noise at Re = 600. 

fundamental mode. We notice that these shapes are similar to  those of the 
fundamental mode, while the shapes of the distributions at  frequencies lower than 
the fundamental are different from those of the fundamental mode, as shown in 
figure 22(h) .  Though the growth of this noise is suppressed strongly by the 
fundamental mode, the noise around the fundamental mode grows as the intensity 
of the fundamental mode increases. On the other hand, the subharmonic noise grows 
gradually after the saturation of the fundamental mode, as shown in figure 21 ( c ) .  The 
amplitude of the fundamental mode a t  the inlet plane is so high that the flow can be 
locked, which is similar to the experimental results of Gharib & Williams-Stuber 
(1989). 

I n  Case 5, with a noise amplitude of 0.01, the spectrum around the fundamental 
mode develops as we move downstream. Figures 10(b) ,  23(a), 23(b) and 23(c) show 
the spectra of v and u, at x = 25 and y = -2.7, and at  x = 175 and y = - 1.7. We can 
observe in figures lO(b) ,  23(a) that the spectra have a continuous energy band 
around the fundamental mode but does not have a sharp peak at the fundamental 
frequency. In  this case, the nonlinear interaction between a few modes close to the 
fundamental frequency are important. We notice in figure 23(b,c) that the 
magnitude of the noise, a t  frequencies lower than the fundamental, is larger than 
that of the fundamental. Figures 24 (a )  and 24 ( b )  show phase diagrams a t  x = 25 and 
R: = 175, which are at the same x, y locations as figures 23 (a )  and 23(c), respectively. 
Figure 24 (a )  shows a combination of organized and non-periodic traces, while figure 
24(b) shows a more chaotic-like trace. This indicates that  ordered motion (i.e. the 
vortex street) is generated and that random motion is suppressed, even though the 
inlet flow is forced by random noise of large amplitude. After saturation of the 
growth of the organized motion, the flow becomes increasingly random. 

I n  Case 3, with inlet amplitude forcing at 0.01, no significant modes with 
magnitudes larger than exist other than the fundamental and its harmonics and 
first two subharmonics. On the other hand, when the forcing amplitudes are a t  
0.00001, a band of frequencies develops downstream of the inlet plane, as shown in 
figure 25(a, b).  In  this case, the spectrum becomes full further downstream. We 
conjecture that a t  this amplitude, very weak feedback between the outflow and 
inflow boundaries is able to compete linearly with the forced perturbation. At higher 
amplitudes, the forced perturbation suppresses the feedback signal through nonlinear 
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FIQURE 21. Energy spectra of w ;  Case 4 at Re = 600: (a) 5 = 0,  y = 0; 
( b )  x = 75, TJ = - 1.7; (c) x = 150, y = -2.1. 

mechanisms to produce ‘clean ’ spectra. Figures 25 (e) and 25 (f) show the spectra of 
v2 and u2 at x = 150. The spectra show a sharp peak at  the fundamental frequency 
at x = 150. Since the magnitude of the fundamental is large and that of the first 
subharmonic is small at  x = 150, we observe a vortex street in figure 26 in the range 
of 100 < x < 200. Figure 25 (c, d) shows a rapid growth of the fundamental frequency 
at x = 50. At x = 150, the spectra of u- and v-fluctuations show a sharp peak a t  the 
fundamental frequency with the other modes in the spectrum beginning to have 
significant energy. Since the magnitude of the fundamental component is much larger 
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FIGURE 23. Energy spectra of u and v ;  Case 5 with high amplitude noise: (a) z = 25, y = -2 .7;  
( b ) z =  1 7 5 , ~ = - 1 . 7 ;  ( c ) z =  1 7 5 , ~ = - 1 . 7 .  

than other modes, we do not observe in a snapshot of vorticity the existence of a full 
spectrum. 

To summarize, we have found selective spatial amplification of the fundamental 
mode and spatial amplification of its subharmonics. These are responsible for the 
appearance of the vortex street and its deformation. When we introduce a 
fundamental mode and random-phase noise at the inlet plane, where the amplitude 
of the fundamental mode is high, locking a t  the fundamental frequency suppresses 
the growth of low-frequency noise. After saturation of the locking frequency, low- 
frequency noise grows gradually. On the other hand, with small-amplitude forcing, 
low frequency noise appears before the appearance of the vortex street, since the 
fundamental mode a t  small magnitudes does not lock the flow. 
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FIGURE 24. Phase diagrams; Case 5 with high-amplitude noise; (a)  x = 25, y = -2.7; 
( b )  5 = 175, y = - 1.7. 

7. Absolutely unstable wakes 
It is known from parallel flow theory (see Hultgren & Aggarwal 1987) that a 

Gaussian wake with no reverse flow can have a region of absolute instability. All 
previous numerical simulations that detect absolute instability considered wakes 
behind bluff bodies where reverse-flow regions exist. In  this section we investigate 
the case of a wake with no reverse flow. Hultgren & Aggarwal(l987) determined the 
critical defect parameter and the supercritical Reynolds number that yield absolutely 
unstable wakes. We used a Gaussian profile at the inlet plane with a deficit of 0.99. A 
fundamental mode of amplitude 0.0005 was introduced at the inlet plane for one 
period. The amplitude of the forcing was then set to zero for the rest of the 
calculation. We investigate the time traces of the oscillation for Re = 300 and 700 a t  
x-locations where the mean defects are similar to the critical values reported by 
Hultgren & Aggarwal (1987). Interpolating from their results we find that the critical 
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FIGURE 26. Vorticity contours; Case 3 with low-amplitude forcing: 100 < x < 200 
(contour interval : 0.0375). 
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defect value is 0.955 at R e =  300 and is 0.949 a t  Re = 700. At Re =300, the 
disturbance does not sustain itself (see figure 27a), indicating that the layer is 
globally stable. At Re = 700, the time traces show that u and v continue to oscillate 
after the inlet forcing is stopped (see figure 27b). We find that the initial disturbance 
propagates upstream, as well as downstream, indicating that the layer is globally 
unstable. Chomaz, Huerre & Redekopp (1988) pointed out that the absolutely 
unstable region must be larger than a critical length for the onset of global 

9 FLM 236 
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sides. The plots of initial values of the traces are arbitrary. 

I 

instability. The length of the absolutely unstable regions in our calculations is about 
2.4 with Re = 300 and 3.5, with Re = 700. In the latter case the absolutely unstable 
region is above the critical size. These facts indicate that a wake without a reverse- 
flow region can be absolutely unstable for sufficiently large Reynolds number and 
defect. 

8. Summary and conclusions 
Direct numerical simulations have been used to  study the development of forced 

spatially developing wakes. The flow has been analysed by visualizing the vortical 
structures through contour plots of vorticity, and by computing the spectra and 
long-time statistical averages. The computational results compare well with the 
experimental observations of Sato & Saito (1975). The study of the forced wake 
through the nonlinear regime indicate the following conclusions : 

(i)  When only the fundamental mode is forced, a regular vortex street is 
generated. The fundamental and higher harmonics grow rapidly before the 
appearance of alternate-signed vortices (vortex street). When a fundamental mode 
whose magnitude at  the inlet plane is much larger than that of external noise is 
forced, the fundamental mode grows rapidly and suppresses the growth of the other 
modes. The vortex street that appears downstream will not experience further 
distortions. 

(ii) Two subharmonics forced in addition to a fundamental mode will generate a 
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distorted vortex street. When the amplitudes of the three modes are large, harmonics 
of the second subharmonic will grow. For the amplitudes and zero relative phase 
considered, the energy in the subharmonic a t  the centreline peaks while the 
fundamental is saturating. But this growth does not affect the vortical structures. 
The energy in the first subharmonic grows gradually after the saturation and decay 
of the fundamental. This growth leads to significant distortion of the vortex street. 
The effects of relative phase and initial amplitudes were not considered in this work. 
These effects are known to be important (see for example the work of Meiburg 1987, 
and Chen et al. 1990). 

(iii) When the amplitude of the forcing (either random-phase noise or discrete 
modes) is small, a band around the fundamental frequency is selectively amplified 
and grows faster than modes at frequencies around the subharmonics. The cross- 
stream profile of the fundamental mode is quite similar to that of the forced case with 
a single frequency. Low frequency modes grow after saturation of the fundamental 
mode. 

(iv) When the amplitude of the random-phase noise is large, a band of energy a t  
frequencies close to the fundamental frequency is amplified, but the band is broader 
than in the small-amplitude case. This will lead to a fuller spectrum and stronger 
interactions between the vortices downstream. We find vortices of the same sign that 
pair and vortices of opposite sign that couple. The vortical structures become more 
randomly distributed as the flow develops. 

(v) For an inlet wake deficit of 0.99, the flow is globally unstable a t  Re = 700. The 
critical size of the absolutely unstable region appears to be about three. 

The first author (H.M.) wishes to acknowledge support from the ministry of 
education exchanging program fund and NASA Ames Research Center. The third 
author (J. C. B.) acknowledges support from the National Research Council and the 
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